Abrikosov Lattices in Finite Domains
نویسنده
چکیده
In 1957 Abrikosov published his work on periodic solutions to the linearized Ginzburg-Landau equations. Abrikosov’s analysis assumes periodic boundary conditions, which are very different from the natural boundary conditions the minimizer of the Ginzburg-Landau energy functional should satisfy. In the present work we prove that the global minimizer of the fully non-linear functional can be approximated, in every rectangular subset of the domain, by one of the periodic solution to the linearized Ginzburg-Landau equations in the plane. Furthermore, we prove that the energy of this solution is close to the minimum of the energy over all Abrikosov’s solutions in that rectangle.
منابع مشابه
FUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملExtra-Dimensional “Metamaterials”: A Model of Inflation Due to a Metric Signature Transition
Lattices of topological defects, such as Abrikosov lattices and domain wall lattices, often arise as metastable ground states in higher-dimensional field theoretical models. We demonstrate that such lattice states may be described as extra-dimensional “metamaterials” via higher-dimensional effective medium theory. A 4 + 1 dimensional extension of Maxwell electrodynamics with a compactified time...
متن کاملLocally complete path independent choice functions and their lattices
The concept of path independence (PI) was first introduced by Arrow (1963) as a defense of his requirement that collective choices be rationalized by a weak ordering. Plott (1973) highlighted the dynamic aspects of PI implicit in Arrow’s initial discussion. Throughout these investigations two questions, both initially raised by Plott, remained unanswered. What are the precise mathematical found...
متن کاملA SHORT NOTE ON ATOMS AND COATOMS IN SUBGROUP LATTICES OF GROUPS
In this paper we give an elementary argument about the atoms and coatoms of the latticeof all subgroups of a group. It is proved that an abelian group of finite exponent is strongly coatomic.
متن کاملA duality between fuzzy domains and strongly completely distributive $L$-ordered sets
The aim of this paper is to establish a fuzzy version of the dualitybetween domains and completely distributive lattices. All values aretaken in a fixed frame $L$. A definition of (strongly) completelydistributive $L$-ordered sets is introduced. The main result inthis paper is that the category of fuzzy domains is dually equivalentto the category of strongly completely distributive $L$-ordereds...
متن کامل